If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7b^2-18b+8=0
a = 7; b = -18; c = +8;
Δ = b2-4ac
Δ = -182-4·7·8
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-10}{2*7}=\frac{8}{14} =4/7 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+10}{2*7}=\frac{28}{14} =2 $
| -9x+6+2×-4=9 | | 132=10r-8 | | 4b-14=5b-19 | | 13x-32=22+15x | | 17u=5u+12 | | 2x+5x=-35 | | -9.82=-7.95+a | | 49n^2+21n=0 | | 7(2n+3)=2(2n–6)+3 | | 2t+8=-+-10 | | (5x-6)+x=2x+10 | | 150+.75x=100+1.25x | | 6(2x-7)=-36 | | 4b2-8b-5=0 | | 21-3p=15 | | 8x+12x=100(4-3) | | 2p-p=34 | | Y/2=x/2+4 | | 2p(p+1)=36 | | 0.30x+0.05(8-x)=0.10(29) | | -6/10+3r=1/3r+62/3 | | 1/2(-4+x)=13/2 | | 148=5x-6 | | -(6x+4)-(-5x-9)=7 | | -4+a=7 | | A=1/3f | | -2/5(x+3/4)=-1/6(x+3) | | 16=1/3f | | -8x-6=-2x | | 3(x+8)=2(x+12)+2x+5 | | -3/5x+1/2=7/10 | | 5b^2-36-32=0 |